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In the tutorial, we discussed the following:

Theorem 0.1. Let f : R→ R be a C∞ function such that for each x ∈ R, there
exists some n ∈ N with f (n)(x) = 0. Then f is a polynomial.

The proof basically follows the outline here. You can also check this post
for more interesting applications of Baire category theorem.

Throughout the proof, we will freely use the following two facts:

(i) If a < b < c < d, and g is a polynomial on both (a, c) and (b, d), then f is
a polynomial on (a, d).

(ii) If g is differentiable and g = 0 on a subset E of R, then g′ = 0 on E′ (The
set of limit points of E).

For the first item, say f = p1 on (a, c) and f = p2 on (b, d) be the two
polynomials, then p1 = p2 on (b, c) and so p1 and p2 are the same polynomials.
(Two different polynomials can only agree on a finite set)

For the second item, let x′ ∈ E′, then we can choose xn ∈ E and xn → x.

then g′(x) = limn
f(xn)−f(x)

xn−x = limn
0−0
xn−x = 0.

Proof. We follows the steps in the questions, we introduce the notations:and
showing the following steps:

X = {x ∈ R : f is not a polynomial in any open neighbourhood of x},

Sn = {x ∈ R : f (n)(x) = 0},

and show the following

Step 1: Show that X is closed without isolated points.

Step 2: Show that Sn is closed.

Step 3: Suppose X 6= ∅. Show that there exists a positive integer n and a
nonempty open interval (a, b) such that

∅ 6= (a, b) ∩X ⊂ Sn.
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Step 4: Show that f is a polynomial.

We first show that how step 1-3 can implies step 4.
Suppose f is not a polynomial, then X is nonempty by item (i). By Step 3, we
can find a nonempty open interval (a, b) such that

∅ 6= (a, b) ∩X ⊂ Sn.

We claim that f (n) = 0 on (a, b). This will imply f is a polynomial of degree
< n on (a, b), contradicting to the assumption (a, b) ∩X 6= ∅.

To show the claim, let x ∈ (a, b). If x ∈ X, then x ∈ Sn and so we are
done.

Now suppose x 6∈ X. By Step 1, we know that (a, b) \X is open, so we can find
a maximal open interval (a′, b′) ⊂ (a, b) \X so that x ∈ (a′, b′). (The existence
of maximal interval follows from question 1 tutorial 10.) We note that either
a′ ∈ X or b′ ∈ X, because otherwise we must have a′ = a and b′ = b contradict-
ing to (a, b) ∩X 6= ∅. Let’s assume a′ ∈ X
Since (a′, b′) ⊂ Xc, we know f equals some polynomial of some degree d on
(a′, b′) by item (i). In particular, we have f (d) is a nonzero constant on (a′, b′).
By continuity, we must also have

f (d)(a′) 6= 0.

We finally make use of item (ii): f (n) = 0 on (a, b) ∩X, but we know X has no
isolate points (i.e. X ′ = X). So item (ii) says f (m) = 0 for all m ≥ m. This
gives d < n and hence f (n)(x) = 0.

To finish the proof, we must show step 1-3.

Step 1: We first show Xc is open. Let x ∈ Xc, then f is a polynomial in a
neighbourhood (x − ε, x + ε), and so (x − ε, x + ε) ⊂ Xc. We next show
that X has no isolated points. In fact, if x ∈ X is an isolated points, then
we can find a neighbourhood (x− ε, x+ ε) so that (x− ε, x+ ε)∩X = {x}.
But then f is a polynomial on (x− ε, x) and on (x, x+ ε), so we can find
positive integers n1, n2, n3 so that f (n1) = 0 on (x − ε, x), f (n3) = 0 on
(x, x + ε) and f (n2)(x) = 0. So if we take n = max{n1, n2, n3}, we have
f (n) = 0 on (x− ε, x+ ε) which contradicts to x ∈ X.

Step 2: Since f (n) is continuous and {0} is closed, so Sn = (f (n))−1({0}) is closed.

Step 3: Step 1 tells us that X is closed subset of the complete metric space R, so
X is a complete metric space. On the other hand,

X = ∪∞n=1(X ∩ Sn),

so by Baire category theorem, some X ∩ Sn has nonempty interior. In
other words, it contains some open subsets of X, i.e.

∅ 6= (a, b) ∩X ⊂ X ∩ Sn ⊂ Sn.

for some a, b ∈ R.
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